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Calculation of the formation and migration energies for 
a vacancy in anthracene crystals 
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Department of Physics, Yokohama City University, 22-2 Set0 Kanazawaku, Yokohama 
236, Japan 

Received 7 June 1988, in final form 27 September 1988 

Abstract. The formation energy of a molecular vacancy in a crystal of anthracene was 
calculated using the atom-atom potential method. This energy was found to be 93% of the 
packing energy of a regular lattice. The relaxation of molecules surrounding the vacancy 
was very small and anisotropic. The migration of an anthracene molecule from one site to 
another vacant site was also studied in two directions. The calculated value of the self- 
diffusion energy for the (0 lo]  jump was 125% of the regular lattice energy, whereas that for 
the [OOl] jump was 138%. 

1. Introduction 

The disturbance of a crystal structure in the vicinity of a vacancy was first calculated by 
Craig and Markey (1979) for naphthalene and anthracene using the atom-atom potential 
method (Silinsh 1980, Pertsin and Kitaigorodsky 1987). The model used consisted of a 
cluster of 20 molecules, which were the nearest neighbours to a vacant site. The cluster 
had no outer rigid layer. Lattice relaxations found in this model were so small that no 
molecule was displaced by more than 0.01 nm from its perfect-crystal site. The gain in 
packing energy due to a relaxation was estimated to be 2 4 %  of the packing energy of 
the regular lattice. Mokichev and Pakhamov (1982) estimated this gain to be 1.4% in a 
naphthalene crystal. 

Recently, Dautant and Bonpunt (1986) calculated the formation and migration 
energies for a vacancy in a naphthalene crystal. The model for the formation energy 
consisted of the inner layer of the 12 nearest-neighbouring molecules, which were 
allowed to relax, and the outer rigid layer. The energy variation due to relaxation was 
estimated to be 4.4% of the packing energy of the regular lattice. The molecular 
arrangements for the migration were composed of a diffusing molecule, the four nearest- 
neighbouring molecules, and the outer rigid layer. 

In this paper we will report calculations of the formation and migration energies for 
a vacancy in an anthracene crystal. The two-layer cluster model was adopted to estimate 
these energies. Both the methods of static energy minimisation and molecular dynamics 
were used to evaluate the formation energy of the vacancy. To estimate the migration 
energy only the static method was adopted. We have examined in detail the influence 
on the energy of the size of the inner layer and of the magnitude of the cut-off radius for 
the interaction between atoms. In order to calculate the relaxation energy numerically 
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with high accuracy, we will introduce several kinds of cut-off radii as Mokichev and 
Pakhamov (1982) did. We were able to perform these numerical calculations with the 
aid of a supercomputer. Supercomputers HITAC S810 and S820 were used in this work. 

2. The potential function and the regular lattice 

It is assumed that the potential energy of interaction between any two molecules in a 
crystal is given by a sum over the atom-atom pair interactions. In the present calculation 
the functional form of the pairwise-additive atom-atom potentials is the Buckingham 
function 

@ , ( r , )  = - A 1 , / T 6 ,  + B ,  exp(-C,r,) (2.1) 

where rl, is the distance between non-bonded atoms and A ,  B and C are empirically 
determined parameters, For A ,  B and Cwe used thevaluespresented by Williams (1966) 
in set IV, (Craig and Markey 1979, Dautant and Bonpunt 1986). All molecules are 
assumed rigid, i.e. intramolecular vibrations are assumed to be negligible. Atomic 
position coordinates for an anthracene molecule were taken from the neutron diffraction 
experiments (at T = 16 K) by Chaplot et a1 (1982). 

We begin by constructing the regular lattice, which is stable under the given potential 
parameters. An anthracene crystal is monoclinic (space group P2,/a) with two molecules 
(A and B) in a unit cell. The potential energy per molecule of this regular lattice is 
expressed by seven variables: 

where a ,  b and c represent the unit lengths of three axes of the crystal, /3 is the angle 
between the a and c axes, and 8 ,  qj and 9 are the Euler angles of a molecule of type A. 
The Euler angles ( 8 ,  cp, V )  of a molecule are taken to be those present in rotation from 
the state where the molecular plane is parallel to the ab plane of the crystal and the long 
molecular axis is parallel to the a axis. We minimise EL({x,}) by means of the Newton 
minimisation method. In order to calculate with high accuracy and make good use of a 
supercomputer, instead of differentiating numerically we introduce differential func- 
tions {dEL/axI},  {d2E,/dxldx,} and then calculate them numerically. The energy EL is 
given by 

EL = E,(a, b ,  C? B,  6 ,  9, VI  (2.2) 

where @ p q ( Y k p , [ q )  represents the interaction energy between the pth atom in the kth 
molecule and the qth atom in the Ith molecule. The vector rkf , lq  is given as 

where rk and r/ represent the positions of the centres of mass of the kth molecule and the 
Ith molecule, respectively; T ( O k )  and T(Ol) are transfer matrices for those molecules; 
the Euler angles (8, Q,, y )  are abbreviated to 0;  up and a, are the vectors that indicate 
the relative positions of the pth atom and the qth atom with respect to the centres of 
mass of those molecules, respectively. By calculating differential functions numerically, 
the Newton minimisation scheme is repeated until the energy has converged. Typically, 
seven or eight repetitions are necessary to achieve a converged value with errors within 
1 x kJ mol-'. 
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Table 1. Cohesion energy lELI of the regular lattice at various values of r,; rL is the cut-off 
radius that is used when a stable lattice is calculated using the Newton minimisation scheme; 
rESL is that which is used when the energy is summed. 

IELl (kJ mol-') 

rL = 0.8 nm 1.6 nm 2.4 nm 3.2 nm 

rESL = rL 94.97 104.52 105.49 105.73 
rESL = 30 105.89 105.90 105.91 105.91 

Table 1 shows the influence on the energy of the cut-off radius for interaction between 
atoms. We denote by rL the cut-off radius that is used in the Newton method and by rESL 
that which is employed in the energy summation (Mokichev and Pakhamov 1982). The 
calculations were performed for rL = 0.8, 1.6, 2.4 and 3.2 nm. The energy values for 
rESL = CQ were calculated using a continuum approximation at the range r > rL. It is 
revealed that the calculated values of EL depend very weakly on rL but strongly on rEsL. 
Therefore we use a large value of rESL in order to determine the energy EL with high 
accuracy. Under the potential parameters mentioned above, the potential energy EL of 
the regular lattice was estimated as -105.9 kJ mol-'. 

The experimental value of the enthalpy of sublimation (AH) given by Malaspina et 
a1 (1973) is 100.5 kJ mol-'. Using the law of equipartition of thermal energy we get the 
following approximate expression (Pertsin and Kitaigorodsky 1987): 

lELl = AH + 2RT (2.5) 
where R denotes the gas constant. From (2.5) we obtain the value of 107 kJ mol-' for 
/ELI, which is almost identical to our calculated value. The evaluated lattice constants 
werea = 0.812nm,b = 0.595 nm,c = 3..117nm,P = 2.15, 8 = 1.18, pl = 1.13and I) = 
1.91. The experimental values obtained by Chaplot et a1 (1982) are a = 0.837 nm, b = 
0.600 nm, c = 1.112 nm, /3 = 2.19, 8 = 1.14, pl = 1.10 and = 1.93. The calculated 
values agree approximately with these experimental values, except the unit length of the 
a axis. 

3. Formation energy and equilibrium configuration of a vacancy 

To estimate the formation energy of a vacancy we have used the methods of static energy 
minimisation and molecular dynamics. It was confirmed that both methods gave the 
same result. Since thestaticmethodconverged more rapidlythan themolecular dynamics 
method, the former was adopted to determine parameters, as will be explained in the 
following. 

After constructing a stable regular lattice of sufficient size, in order to create a 
vacancy we remove one molecule from the centre site (0, 0,O) and put it on the kink site 
on the surface. The system now has an interaction energy just lELl higher than that 
before removing the molecule. Our model to deal with the relaxation of molecules 
around the vacancy consists of two layers. One is the outer rigid layer. The other is the 
inner layer, which consists of the molecules of which at least one atom is included by the 
sphere of radius rre1 with centre at the vacancy site. The positions and orientations of the 
molecules in the inner layer are allowed to relax to minimise the potential energy. We 
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apply the Newton minimisation method separately to individual molecules and move all 
molecules simultaneously. We calculate numerically differential functions using a cut- 
off radius rNM. Typically, 70 or 80 repetitions are necessary to achieve a converged value 
with errors within 1 X low4 kJ mol-’. When we sum the energy variation Erel due to the 
relaxation using the cut-off radius YES, displacements of molecules are much smaller than 
the rEs. Therefore the approximation q5 = q5(rEs) for r > rES is better than the complete 
cut-off q5 = 0: 

E,,, = E,,,(complete cut-off) - 

where [N,(initial) - N,(final)] is the difference in numbers of apairs ( a  = C-C, C-H, 
H-H) between the initial and final states. Because of this correction, the calculated 
values of Ere, begin to increase monotonically with the repetition of the Newton method. 

In the numerical calculations we have introduced four parameters, rL, rrel, YNM and 
YES. We examined the influence of these parameters on the relaxation energy E,,,. Figure 
1 shows that the energy E,,, is strongly dependent on the cut-off radius rL that is used 
when the stable regular lattice in the outer rigid layer is constructed. The relaxation 
energies were calculated using rL = 0.8, 1.6, 2.4 and 3.2 nm. Other parameters used 
were r,,, = 2.8 nm (562 molecules in the inner layer), rNM = 1.0 nm and TES = 1.4 nm. 
We can get the energy Erel with errors within 5% through the use of rL > 2 nm, which is 
about twice as large as the distance (0.93 nm) between the ab planes. 

To examine the rrel dependence of Ere,, the relaxation energy Ere, was calculated using 
rrel = 0.8 nm (24 molecules), 1.2 nm (56), 1.6 nm (120), 2.0 nm (222), 2.4 nm (354) and 
2.8 nm (562). Figure 2 shows that the size of the inner relaxable layer also has a strong 
influence on Ere,. Other parameters used were rL = 3.2 nm, YNM = 1.0 nm and YES = 
1.4 nm. We can get Ere, with errors within 5% through the use of an inner layer that 
contains more than 200 molecules. 

Contrary to the above, the relaxation energy Ere, depended on the cut-off radii rNM 
and rES only to a small extent. To examine the rNM dependence of Erel, the relaxation 
energies Ere, were calculated using rNM = 0.8, 1.0, 1.2 and 1.4nm (table 2). Other 
parameters used were rL = 3.2 nm, r,,, = 2.8 nm and rES = 1.4 nm. When relaxing the 
molecules in the inner layer by means of the Newton method, it is enough to use a 

[“(initial) - iVe(final)]q5iy(rEs) 
iy 
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Table 2. Relaxation energies E,,, for various cut-off radii INM; rNM is the cut-off radius that is 
used when the molecules in the inner layer are relaxed using the Newton minimisation 
method. 

~ N M  (nm) 0.8 1 .o 1.2 1.4 
E,,, (kJ mol-') 6.728 6.756 6.758 6.758 

Table 3. Relaxation energies E,,, for various cut-off radii rES; rES is the cut-off radius that is 
used when the energy is summed. 

~~ 

rES (nm) 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
E,,, (kJ mol-') 6.994 6.856 6.792 6.785 6.781 6.780 6.780 

Table 4. Difference between molecular coordinates in the crystallite with the vacancy and 
those in the ideal crystallite. 

Ax' AY Az A 0  AV Ay, 
Site (nm) (nm) (nm) (deg) (ded  (ded  

-0.5, 0.5, 0 
0.5, 0.5, 0 
0 ,  1, 0 
1, 0,  0 

--1, 1, 0 
1, 1, 0 
0.5, -0.5, 1 
0.5, 0.5, 1 
0,  1, 1 
1, -1, 1 

0.011 
0.001 
0.003 

-0.003 
0.001 

-0.001 
0.0 

-0.002 
0.002 

-0.001 

-0.006 
-0.006 
-0.007 
-0.001 
-0.002 
-0.002 
-0.002 

0.001 
-0.001 

0.003 

0.003 
-0.001 

0.011 
0.0 
0.0 

-0.001 
0.001 

-0.002 
-0.002 
-0.002 

-0.16 
0.03 

-1.70 
0.01 

-0.18 
-0.08 
-0.08 
-0.92 
-0.51 

0.56 

2.75 
- 1 .oo 

4.31 
-0.52 

0.02 
-0.01 
-0.76 

0.15 
-0.10 
-0.11 

2.52 
-0.61 
-2.23 

0.20 
-0.19 

0.14 
0.59 

-0.55 
-0.29 

0.15 

relatively small cut-off radius rNM.  Through the use of the cut-off radius r N M  of 1.0 nm 
we can get E,,, to errors within 0.5%. 

To estimate the YES dependence of Ere,, the relaxation energies E,,, were calculated 
using cut-off radii rES = 0.8-2.0 nm (table 3). Other parameters used were rL = 3.2 nm, 
rrel = 2.8 nm and r N M  = 1.0 nm. We can also use a relatively small cut-off radius rES to 
sum the relaxation energy E,,,. It seems that these results are in contrast with those of 
the rESL which is used when the energy EL of the regular lattice is summed. This is due 
to the fact that a small displacement of the remote molecules brings about only a slight 
change in the relaxation energy E,,,. Through the use of the cut-off radius of 1.4 nm we 
can get E,,, to within an error of 0.2%. 

The value of Ere, = 7.0 kJ mol-' was obtained using the above estimation. The 
formation energy Ef of the vacancy is given by 

Ef = lELl - Ere, = 98.9 kJ mol-'. 

The displacements due to the relaxation are small and extremely anisotropic. The 
inversion symmetry with respect to the vacancy site is retained after the relaxation. Table 
4 shows differences between molecular coordinates in the crystallite with the vacancy 
and those in the ideal crystallite. This calculation was performed using parameters 
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rL = 3.2 nm, rrel = 2.8 nm (562 molecules), r N M  = 1.0 nm and YES = 1.4 nm. The results 
showed that the maximum displacement of the centres of mass of molecules was only 
0.013 nm. Displacements of molecules on the site (-4, 4 , O )  and (0,1,0) are relatively 
large. Those on the site (&, 4 , O )  are small in spite of the fact that this site is the nearest 
neighbour of the vacancy. All molecules around the vacancy deviate to make the vacancy 
cavity small. 

4. Activation energies for molecular migrations 

We present the migration energy calculations in two different crystallographic directions: 
[OOl] and [ O l O ] .  First a stable regular lattice of sufficient size is constructed and one 
molecule at the site (Zv, Jv, Kv) is removed. We have a sphere with a radius rreI, the 
centre of which is at the middle point of the vacancy site and the site (ZM, JM, KM) of the 
molecule to be moved. The relaxable inner layer consists of the molecules of which at 
least one atom is included by that sphere. The molecules in the inner layer are relaxed 
to get initial equilibrium configurations. After that the molecule at the site (Z,, JM, K,) 
is moved step by step to the vacancy site. The final position of the migrating molecule 
deviates from the initial vacancy position by the displacement by which the molecule at 
the site (2Zv - ZM, 2Jv - JM, 2Kv - KM) deviates from the regular lattice site in the initial 
relaxation. We express the total displacement of the migrating molecule by the migration 
vector U,. To indicate the displacements of the migrating molecule we introduce the 
coordinates ( X I ,  X 2 ,  X , )  with respect to the new axes el, e2 ande3: el 1 1  U, and e2, e3 I uM. 
At each step the migrating molecule is forced to move by the following displacements: 

AX1 = QM/Nstep (4.1) 

where Nstep is the total number of steps, and 
6 

A X i  = -E (F-l) ,(dE,/dX, + AX1d2E,/dXldX,)  for i = 2-6 (4.2) 
1 = 2  

where the (5  x 5 )  matrix F is defined as 

( F),, = 8 2 E ~ / d X , d X ,  

and EM is the energy of the migrating molecule and X4, X ,  and x6 denote OM, 9), and 
qM respectively. The equation (4.2) is used so as to avoid the collision between the 
migrating molecule and other molecules. The coordinates X ,  to x6 are relaxed together 
with other molecules in the inner layer. When the matrix (d’E,/aX,dX,) had negative 
eigenvalues at the saddle point in the [0 101 migration, the Davidon method was used 
instead of the Newton method. These calculations were performed using the parameters 
rL = 3.2 nm, r N M  = 0.8 nm and rES = 1.4 nm. 

4.1. (0011 jump 

In this case the diffusing molecule of type A situated at (0, 0 , l )  passes to the vacancy 
site (0, 0,O). The migration vector U, = (0.607,0.002, -0.932) was nearly equal to the 
translation vector -c  = (0.611,0, -0.935) of the lattice. The total number of steps was 
chosen to be 100. The calculation was performed for the model where the molecular 
number in the inner layer was 359 (rrel = 2.4 nm). The migrating molecule moved almost 
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Figure 4. Peak values of the relaxation energy 
versus l/rrei in the [ O O l ]  jump; ire, denotes the 
radius of the inner relaxable layer. 

in a straight line between the initial and final sites, while the surrounding molecules 
relaxed. Figure 3 shows that the energy change AE is symmetrical with regard to the 
crystallographic inversion centre situated at (0, 0, i). It possesses four peaks ( A E  = 
47.5, 46.4, 46.4 and 47.5 kJ mol-') and three valleys ( A E  = 44.1, 45.6 and 44.1 kJ 
mol-'). In the calculation in naphthalene two peaks were obtained in this direction by 
Dautant and Bonpunt (1986). 

Whether the energy minima obtained above were absolute minima or only local 
minima was investigated only at the 50th step, as follows. To search for energy minima 
that had the possibility to become absolute minima in the relaxable model, an unrelaxable 
model was examined in which the centre of mass of the migrating molecule was situated 
at (0, 0, i) and the Euler angles were changed step by step ( A 0  = 0.05, A q  = 0.1 and 
AV = 0.1). There were only three states with minimum energies within 16 kJ mol-' of 
the minimum energy corresponding to the state obtained in the above calculations, that 
could be derived from it by a rotation about the molecular axes and were essentially the 
same as it. Therefore it seems that the energy of this state will also be the absolute 
minimum in the relaxable model. At other steps, even if the energy minima obtained in 
our calculation were not absolute minima, the former would be very close to the latter. 

To examine whether the size of the inner layer used above was sufficient, the 
calculations mentioned above were repeated using parameters rreI = 0.4 nm (five mol- 
ecules) to 2.8nm (543 molecules). Figure 4 shows the peak values of the relaxation 
energies. Since the peak values of the energies remain nearly constant at rrel = 2.4 nm, 
the size used above is almost sufficient. The maximum peak value Erel of the relaxation 
energy was estimated to be -40.5 kJ mol-'. If only this jump was efficient, the diffusion 
observed in this direction would have the following activation energy E,,,: 

E d l f  = /.EL/ - EreI = 146.4 kJ mo1-l 

and a migration energy Emig: 

Emlg = Edif - E f  = 47.5 kJ mol-'. 

We also examined the case where the outer rigid layer had lattice constants that were 
calculated using a cut-off radius rL = 0.8 nm. This energy was found to be smaller by 
3 kJ mol-'. 
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In this case the diffusing molecule of type A situated at (0, 1,0) passes to the vacancy 
situated at (0, 0,O). The migration vector uM = (-0.006, -0.581, -0.021) was nearly 
equal to the translation vector -b  = (0, -0.595,O) of the lattice. In the course of 
migration in this direction, there were several energy minima, which were close together. 
To search for minima that had the possibility of becoming the absolute minima in the 
relaxable model, at several steps near the energy peak an unrelaxable model was 
examined in which the position of the centre of mass of the migrating molecules was 
changed step by step in a plane perpendicular to the migration vector and Euler angles 
of states with low energy were sought. The calculations in the relaxable model (rre, = 
2.4 nm, 363 molecules) were performed using these states as initial states at suitable 
steps. Figure 5 shows that an energy variation AE is symemtrical with regard to the 
centre and has five branches, a ,  b,  c, b' and a ' .  The positions and Euler angles of the 
migrating molecule changed a little when this system transferred from one branch to the 
other branch at the cross-over points of Q, P, P' and Q'. However the height of the 
energy barrier from the a branch to the b branch at the point Q was very low in the 
unrelaxable model and that from the b branch to the c branch at the point P was lower 
than 0.02 kJmol-'. Therefore it seems that these barriers also will be low in this relaxable 
model. The energy variation reaches the maximum value AE = 33.5 kJ mol-' at the 
point P and decreases by 3.2 kJ mol-' at the centre. The path of the centre of mass of 
the migrating molecule was symmetrical with regard to the site (O,$ ,  0) and the deviation 
of it from the b axis was small: max(Ax) = 0.025 nm, max(Az) = 0,020 nm. 

Near the middle point of migration there was one branch whose energy was lower 
than that of the c branch. However an energy barrier from the c branch to this branch 
at points from P to P' was considerably higher than the peak P, because the angle I) of 
the migrating molecule corresponding to this branch differed by about 80" from that 
corresponding to the c branch. Therefore this state will have no influence on the height 
of the peak. 

The maximum peak value Ere, of the relaxation energy was estimated to be -26.8 kJ 
mol-'. If only this jump was taken into account, the observed diffusion in this direction 
would have the following activation energy: 

Edlf = / E L  I - Ere, = 132.7 kJ mol'-' 

Emlg = 33.5 kJ mol-'. 
and a migration energy: 
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5. Discussion 

The vacancy formation energy and the activation energies of self-diffusion have been 
estimated using the atom-atom potential method. It was found that the lattice constants 
of the outer rigid layer and the size of the inner layer had a strong influence on the 
quantitative calculations. The relaxation energy in vacancy formation amounted to only 
6.6% of the regular lattice energy. This ratio is, however, a little larger than that in the 
calculations for naphthalene (1.4-4.4%). The maximum displacement of the centres of 
mass of the molecules around the vacancy was less than 0.013 nm, and the displacements 
were extremely anisotropic. In organic molecular systems (Craig and Markey 1979, 
Koehler 1980, Mokichev and Pakhamov 1982, Dautant and Bonpunt 1986), the mol- 
ecular cage around a vacancy is quite stable against collapse. It seems that this may come 
from the very interlocking form of the packing. This is confirmed by the fact that the 
potential energy has several peaks in the course of migration. 

The experimental values of activation energy for self-diffusion perpendicular to the 
ab plane are 177 kJ mol-' (Sherwood and Thomson 1960), 92 kJ mol-' (Lee et a1 1965), 
84 kJ mol-' (Reucroft et a1 1966) and 202 kJ mol-' (Burns and Sherwood 1972). Those 
in the direction [0 101 are 100 kJ mol-' (Lee et a1 1965) and 84 kJ mol-' (Reucroft et a1 
1966). Except for these tracer methods, McGhie et a1 (1969) obtained the value of 210 kJ 
mol-' using the radical recombination method. This lack of quantitative agreement may 
arise from the effect of impurities, or the differing degrees of crystallinity of the sample 
used (Hood and Sherwood 1966). Our calculated values using the monovacancy mech- 
anism are between the higher experimental values of about 200 kJ mol-' and lower 
values of about 100 kJ mol-'. If the experimental values of about 200 kJ mol-' were 
reliable, it would be necessary to examine other mechanisms such as self-diffusion by 
the divacancy mechanism in silicon (Casey and Pearson 1975). The calculated values of 
migration energy are 32% ([0 101) and 45% ([00 11) of the regular lattice energy, which 
are a little larger than those in naphthalene (30% and 41%) (Dautant and Bonpunt 
1986). These ratios are relatively small compared with those in rare-gas solids (Chadwick 
and Sherwood 1975). 

We also attempted the caiculations of diffusion in the directions [110] and [l iO].  
However the migration of the diffusing molecule in these directions is more difficult than 
that in the [0 101 and [00 13 directions because the rotation of the diffusing molecule is 
prevented by the surrounding molecules due to the interlocking form of the packing. 
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